
"I want to know why the universe exist, why there is something greater than nothing."

Steven Hawking
Scientist, Space Lover

What does the universe look like on small scales? On large scales? Humanity is discovering that the universe is a very different place on every proportion that has been explored. For example, so far as we know, every tiny proton is exactly the same, but every huge galaxy is different. On more familiar scales, a small glass table top to a human is a vast plane of strange smoothness to a dust mite -- possibly speckled with cell boulders. Not all scale lengths are well explored -- what happens to the smallest mist droplets you sneeze, for example, is a topic of active research -- and possibly useful to know to help stop the spread of disease. The above interactive flash animation, a modern version of the classic video Powers of Ten, is a new window to many of the known scales of our universe. By moving the scroll bar across the bottom, you can explore a diversity of sizes, while clicking on different items will bring up descriptive information.

How soon do jets form when a supernova gives birth to a neutron star? The Africa Nebula provides clues. This supernova remnant surrounds Circinus X-1, an X-ray emitting neutron star and the companion star it orbits. The image, from the ThunderKAT collaboration on the MeerKAT radio telescope situated in South Africa, shows the bright core-and-lobe structure of Cir X-1’s currently active jets inside the nebula. A mere 4600 years old, Cir X-1 could be the "Little Sister" of microquasar SS 433*. However, the newly discovered bubble exiting from a ring-like hole in the upper right of the nebula, along with a ring to the bottom left, demonstrate that other jets previously existed. Computer simulations indicate those jets formed within 100 years of the explosion and lasted up to 1000 years. Surprisingly, to create the observed bubble, the jets need to be more powerful than young neutron stars were previously thought to produce. Open Science: Browse 3,700+ codes in the Astrophysics Source Code Library

Against dark rifts of interstellar dust, the ebb and flow of starlight along the Milky Way looks like waves breaking on a cosmic shore in this night skyscape. Taken with a digital camera from the dunes of Hatteras Island, North Carolina, planet Earth, the monochrome image is reminiscent of the time when sensitive black and white film was a popular choice for dimly lit night- and astro-photography. Looking south, the bright stars of Sagittarius and Scorpius are near the center of the frame. Wandering Mars, Saturn, and Zubenelgenubi (Alpha Librae) form the compact triangle of bright celestial beacons farther right of the galaxy's central bulge. Of course, the evocative black and white beach scene could also be from that vintage 1950s scifi movie you never saw, "It Came From Beyond the Dunes."